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1 The Fano configuration
1.1 Projective planes
Subject 0 Projective Geometry [25, 11, 12, 6, 8, 15] is the study of incidence. At the level of planes,
this is a binary relation on points-and-lines.

Structure 0 Axioms for a projective plane are as follows [21].

Projective Plane 0 Any 2 distinct points are incident with (‘lie in’) a unique line.

Projective Plane 1 Any 2 distinct lines are incident at (‘intersect at’) a unique point.

Projective Plane 2 ≥ 4 points are to be present such that no 3 of them are collinear.

Remark 1 0) and 1) form a projectively-dual pair of axioms. For planes, this is in the sense
of exchanging points and lines. More generally, this aspect becomes dimension and codimension
dependent. Notions of join and meet are also to be interchanged.

Naming Remark 1 The above ‘lie in’ amounts to being joined: by a line. While the above
‘intersect’ is a notion of meeting: at a point. Using ‘are incident’ in place of whichever of these
automatically builds in the join-and-meet dual. ‘Lines-and-points’ can then be interpreted as a
concomitant automatically-dual phrasing in the case of planes.

Remark 2 In contrast, 2) gives content to notions of plane exceeding mere notions of line. For
without this, one would still be axiomatizing a Projective structure, just one that is a Projective
line, rather...
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1.2 Smallest projective plane route to the Fano plane

Figure 2:

Route 0 A zeroth route to the Fano plane [5, 7, 21, 28] (Fig 2.a) is setting out to find the smallest
Projective plane.

Remark 3 The circular arcs here represent line segments that are no different from this Subfig’s
others.

Remark 4 The labels here are homogeneous coordinates: Projective Geometry’s analogue of Carte-
sian coordinates. Homogeneous coordinates however exceed the space in question’s dimension d
by 1 in number. The interconnection is that one is to form ratios out of homogeneous coordi-
nates. And to have d independent ratios, we require D := d + 1 quantities [13]! So the 2-d
real-projective plane has 3 independent homogeneous coordinates to the 2-d real plane having 2
independent Cartesian coordinates.

For the Fano plane, these are binary-valued. ( 0, 0, 0 ) is not however among them. For no ratios
can be defined between a set of numbers consisting of just zeros! Modifying the count of binary
triples from

23 = 8

to
8 − 1 = 7 = | Fano | .
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1.3 Completing the smallest affine plane route to the Fano plane
Subject 1 Affine Geometry [9, 18, 16] is the study of parallelism. Historically this largely preceded
Projective Geometry, from Euclid’s parallel postulate to Euler’s 18th century abstraction of Affine
Geometry. In contrast, while the first Projectively significant result was found by Pappus in the 4th
century, this did not arise in a Projective context. The next were found by Desargues and Pascal
in the 17th century. But synthesis into a coherent picture of Projective Geometry had to await the
early 19th century, with work of Carnot and Poncelet. Projective Geometry was furthermore found
to simplify many Affine results and proofs, and to complete various Affine structures.

Remark 5 Another route to the Fano plane is setting out find the smallest Affine plane (Subfig c).
And then completing this to form a Projective plane.

To make sense of this approach, we first need to present the Affine plane axioms...

Affine Plane 0 and 2 These are the same as Projective Plane 0 and 2. Indeed, they build up from
a notion of line to a notion of plane, without reference to what Geometrical kind of plane we mean.

Affine Plane 1 A point P and line L support a unique line which contains P And is parallel
to L .

Remark 6 This has various equivalent formulations corresponding to considerably different con-
ceptualizations. Among these, the following due to Playfair is somewhat of a stepping stone toward
Projective Geometry.

Affine Plane 1′ Suppose that we start with a line L and any point P not lying on L . Then
there is a unique line containing P while not meeting L .

Remark 7 For it can be couched in Projective language as follows.

Affine Plane 1′′ Suppose that we start with a line L and any point P not incident with L .
Then P is incident with a unique line that is not incident with L .

Remark 8 Passage to Projective Geometry moreover involves ditching this for the dual version of
axiom 0. Thus forming a more structured first pair of axioms.

Structure 1 We next need to explain what we mean by the form taken by Projective completion
when applied to an incipient Affine plane. This amounts to adding in points at infinity. So as to
serve as where parallel lines extend to intersect. Alongside adding in a line at infinity incident with
the points at infinity. Which is subsequently to be treated no differently from the others.

Proceeding in the opposite direction – Affine restriction – amounts to ripping out a line assigned
to serve in this role. Alongside its incident points and the other line segments incident with these
points.

So consider the Fano plane as presented in Subfig 2.a). Then it is the ‘line depicted as a circle’ that
is assigned the role of the line at infinity. And is thus ripped out in passing to the smallest Affine
plane.

While starting from the minimum affine plane, 3 points at infinity are required. In our equilateral
presentation, extending to these and placing new points at the intersections forms the barycentric
subdivision of Subfig b). Finally joining these up necessitates representing this line as a circle.1

1Projective Geometry does not in any case distinguish between lines and circles... We might as well use ‘cline’ for
circle-or line. Though it appears to be slightly less convenient to portmanteau ‘line segment’ and ‘circular arc’. ‘Cline
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2 Introducing the Fano Graph
2.1 The projective route
Structure 1 The underlying Fano graph is in Subfig 1.a). By its matching the Projective Geometry
configuration, let us refer to a) as the Projectively-natural presentation of the Fano graph.

Remark 1 The Fano graph is readily established to be planar, by taking the circle’s arcs outside of
the vertices’ hull (Subfig b). Subfig c) is then a corresponding rectilinear presentation; it is always
possible to find such for planar graphs by the Fáry–Stein–Wagner Theorem [24].

Remark 2 Among all the possible rectilinear presentations, this particular one is uniquely fixed
by firstly manifesting the graph’s full symmetry. This is S3 = D3 : the symmetry group of the
equilateral triangle. And so entails working within an equilateral triangle perimeter. And secondly
by barycentrically placing the remaining vertices. Which is a stronger restriction as regards the
middle layer of vertices than just maintaining the above symmetry group...

2.2 The stellar subdivision route
Structure 2 Indeed, the Fano graph is also the result of twice totally stellating a triangle. Each
individual stellation move replaces an input triangle subgraph C = C3 ( 3-cycle) with a Tet
subgraph. Where Tet is the tetrahedron graph, alias complete 4-graph K4 . Coincidentally, this is
also the graph underlying the smallest affine plane (Fig 2.c). And the projective completion sending
this to the Fano plane turns out to be the same as this particular total stellation!

For the first stellation of a triangle there is no difference between stellation and total stellation.
But the second stellation is minimal for these to be distinct notions. For one now has 3 smaller
triangles, and one could choose to stellate just 1 , 2 or all 3 . See Fig 3 for the first two. While
in the case of all three, a total stellation is being conducted.

Figure 3:

Remark 3 Barycentric placings are natural in considering stellations. Using an incipient equilateral
triangle gives the most symmetric embedding of the graph into the plane for each subsequent total
stellation. All in all, let us refer to Subfig 1.c) as the unique symmetric-barycentric specialization
among the manifestly-planar rectilinear presentations!

2.3 Ramsey presentations and complement graphs
Structure 3 A Ramsey presentation places related and unrelated on the same footing. Consider
this in the context of graphs whose edges mark related pairs of vertices and are coloured in say blue.
sarc’ is our hitherto unaired suggestion [30].
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Then unrelated pairs of vertices are not to be left unhighlighted. But are rather to be placed on the
same footing as related pairs, by bringing in edges of a second colour, say red.

Remark 4 Applying this to the projective and symmetric-barycentric presentations of the Fano
graph returns the corresponding Ramsey presentations in Subfigs 1.d-e).

Remark 5 One can then peel off the blue edges to reveal the complement of the Fano graph (Subfigs
1.f-g). Which can readily be straightend out to reveal the Sunlet graph alongside a loose point, D
(Subfig h).

The loose point here corresponds to the Fano graph having a cone point: of degree N − 1 in a
graph of size N . So that it is linked by an edge to every other vertex in the graph. In both of
our presentations of the Fano graph, symmetry is maximized by placing the cone point innermost.
Where it can be placed to coincide with the centre of symmetry.
Exercise 1 Show that the Fano graph’s degree sequence uniquely specifies it.

2.4 The Contact Geometry route

Figure 4:

Structure 4 We can also arrive at Tet by taking 3 touching circles and trapping a fourth between
them [Subfigs a) and b) of Figs 4–6]. For sake of simplicity, we take these incipient 3 to be of the
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same size. We can then repeat this process of inserting touching circles into the new gaps created.
Then joining up the centres of all pairs of touching circles produces the C, Tet, Fano ... sequence.
See now Subfigs c)-d) of the above Figures.

Historical Remark 1 This Contact Geometry route for arriving at the ‘Fano’ graph in fact dates
all the way back to a study of Leibniz [2]. Of a simple recursively-defined subcase of Apollonius’
problem [1] of placing a circle to be in contact with multiple other circles. This has higher significance
through being one of the first of what came to be known as fractal structures to be studied.

Figure 5:

Naming Remark 2 In the process, a widely used alias for the stellated triangles’ graphs arises:
Apollonian networks. Though some authors extend the meaning of one both of these from out total
use to partial use as well. This corresponds to inserting touching circles into some gaps but not
others.
Remark 6 Contrast also Fig 6’s Contact Geometry presentation with Fig 7’s barycentric stellar
subdivision presentation!
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Figure 6:

2.5 Strong triangulation route
Sturucture 4 Since all faces of a triangle that has been subjected to stellation are triangles, stella-
tions are also examples of triangulation [10, 26, 27, 33]. Let us here distinguish between cutting up
a polygon into triangles by edges emanating from its vertices. And cutting up a triangle specifically.
In this second case, the outer face is also a triangle, and so all the faces are triangles: a strong
triangulation. While in the first case for a ≥ 4-sided polygon, the outer face is not a triangle: a
weak triangulation.

Remark 7 Then the Fano graph, and more generally the Apollonian graphs alias stellations of the
triangle – in each case total or partial – are strong triangulations.

Exercise 2 Find the smallest strong triangulation that is not some stellation of the triangle.

Remark 8 This establishes that the converse is false, by which strong triangulations cover more
than just a reconceptualization of stellations... So on the one tip of a trident, the smallest Affine
plane and its completion the Fano plane are a terminating series. On another tip of a trident,
stellation or the Apollonius gasket have these feature near the start of an infinite series. And on the
final tip of a trident both, are additionally strong triangulations, which constitute more than just
series structure!

Naming Remark 3 The Fano graph thus starts to fulfill the many routes condition for a Mathe-
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Figure 7:

matical object or structure to be a citizen of Kallista [30, 31]. As we shall outline at the end of the
current Article, both it and the Fano configuration are rather stronger citizens of Kallista than just
this.
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3 Notions of traversability
3.1 Eulerian and Hamiltonian graphs
Definition 1 A graph is Eulerian if out of all of its edges, one can form a circuit. I.e. a closed
loop, with no repeat uses of any edge. But with permission granted to pass multiple times through
vertices if needs be.

Definition 2 A graph is Hamiltonian [17, 19, 24] if one can form a cycle that passes through every
vertex. Unlike a circuit, a cycle does not grant permission to pass multiple times through any vertex.

Structure 1 These are respectively a notion of edge traversability and a notion of vertex traversabil-
ity. For each of vertices and edges, graphs indeed support other distinct notions of traversability.

Remark 7 The Fano graph is immediately obviously non-Eulerian since it possesses vertices of odd
degree. But Euler [3] initiated this subject with the result that Eulerian graphs must contain solely
even-degree vertices.

Remark 8 The Fano graph is small enough that it is easy to espy Hamiltonian cycles therein.

3.2 Planar Hamiltonian graphs
Remark 9 For a planar graph, a more systematic way of establishing Hamiltonianness is to split
the graph into precisely 2 regions. Such that each contains the same number of triangles (weakly
triangularizing up any larger polygons present). This is widely known as Grinberg’s theorem [14, 19,
24].

Though in our institution, we call it the ZIPHoN theorem [30, 31, 32]. Standing for zero-index planar
Hamiltonian Necessity! Where the zero index in question is the precise balance of the inner and
outer triangles. Though the literature elswewhere has more confusingly proceeded by defining ‘face
strengths’ instead of by triangulating and then just plainly counting. And have also not realized
that it is a zero-index theorem in the plane. Or, indeed, an actual (non-zero) toy index theorem
when conducted on surfaces [30, 32].

Remark 10 The Fano graph is already fully triangulated, outer face included! This situation –
simplifying its ZIPHoN treatment – is equivalent to Sec 2’s construction of the Fano graph as a
strong triangulation. One choice of white-and-cyan regions with equal counts of triangles is then
exhibited in Subfig 8.a) The Hamiltonian cycle is then the boundary between these 2 regions.2

Exercise 3 Does the Fano graph support inequivalent Hamiltonian cycles? [Ones related by a
symmetry transformation count as the same.]

2For planar Hamiltonian graphs, each of the inner and outer regions must furthermore be outerplanar! This
observation gives the following nice formulation [30]. Suppose that a planar graph can be split up into precisely 2
outerplanar strips. Then there must necessarily be a Hamiltonian cycle between them!

10



Figure 8:

3.3 A manifestly-Hamiltonian presentation of the Fano graph
Remark 11 Since the Fano graph is Hamiltonian, for some purposes it is useful to form a manifestly-
Hamiltonian presentation. One such is provided in Subfig b). A subsequent version of the current
Article shall look into variants of this, such as minimizing the presentation’s crossings. And looking
into whether any symmetry elements can be exhibited within the straightjacket of a Hamiltonian-
and-rectilinear presentation...

3.4 Further presentations of the Fano graph forthcoming!
Pointer 1 More generally, over the next few years we will be applying the full force of the Handbook
of Graph Drawing and Visualization [29] to a collection of particularly exhalted graphs, the Fano
graph included. The idea here is to give optimized rather than just random presentations of these
graphs. And to give not just individual such presentations for each graph of interest. But rather
large mosaics of what they look like within the confines of a large number of competing simplicity,
optimization, manifestness and aesthetic criteria.
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4 Colourability properties
4.1 The basic ones
Definition 1 [17, 24, 20] A (vertex) colouring of a graph involves colouring in its vertices. According
to the rule that no 2 adjacent vertices – joined by some edge – share the same colour. An edge-
colouring of a graph involves colouring in its edges. According to the rule that no 2 adjacent edges
– meeting at some vertex – share the same colour. The (vertex-)colouring number of a graph is the
minimum possible number of colours in a (vertex) colouring of it. The (edge-)colouring number of
a graph is the minimum possible number of colours in an (edge) colouring of it. (Vertex-)chromatic
number and edge-chromatic number are widely used aliases.

Remark 1 In these colourings, the colours assigned are modelled to be mutually-distinguishable and
yet individually meaningless. This means that permuting the colours assigned in actually drawing a
presentation of a colouring is not taken to affect that colouring. So that all colouring presentations
related by such permutations are taken to be one and the same.

Remark 2 The Fano graph is 6-edge colourable: one less than the maximum possible for a simple
7-graph. For it is a cone graph. So its cone-point vertex is adjacent to all other 6 vertices. So

each of the 6 edges emanating from it must be of a different colour. See Fig 9.a).3

Finally see Subfig b) for a subsequent completion of the edge-colouring scheme that re-uses 5 out
of 6 colours. Which is a sharp lower bound. For the Fano graph also contains a vertex of degree
5 (in fact 3 such).

Figure 9:

Remark 3 The Fano graph is 4-colourable – the maximum possible for any planar graph by the
famous 4-colour theorem. This readily follows from the below analysis that establishes a rather
stronger property.

3The complete graph K7 illustrates how bringing in even more edges can force a seventh edge colour. No simple
7-graph can have more edges than this, so its edge number places an upper bound on all the others.
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4.2 Unique colorability
Remark 4 Unique colourability is a significant enough property to be tabulated in An Atlas of
Graphs [23].4 Unique colourability is indeed up to the abovementioned permutation of vertex colour
labels. A standard characterization for unique 4-colorability is as follows. Colouring in any triangle’s
vertices fixes the colours of all remaining vertices. This 4 is relevant as firstly the maximum possible
vertex chromatic number for planar graphs, by the famous 4-colour theorem [24]. Secondly, as the
generic value of the vertex chromatic number in planar graphs. And thirdly today indeed as the
vertex chromatic number of the Fano graph!

Remark 5 By symmetry, the Fano graph has 4 choices of an initial triangle to colour. As char-
acterized by each triangle’s vertices’ degrees; see the top floor of Fig 10 Via the forcing moves
indicated by this diagram’s arrows, each of these initial probes leads all the way down to the Fano
graph acquiring the same vertex colouring.

4.3 Colourability-forcing posets

Structure 2 This figure is our first public exhibition of S. Sánchez’ notion of a colourability-forcing
poset. For our Fano example, this is a fortiori a rooted tree. Which we present ‘botanically’, i.e.
with the root at the bottom of the figure. This poset carries furthermore a natural height function:
the colouring-in number hCi .

4.4 The unique colourability route to Fano and friends
Pointer 2 In fact, unique 4-colourability and being a stellation of the triangle turn out to be
equivalent criteria [22]. Giving yet another route to (the more general) Apollonian graphs. Among
which the Fano graph is the first nontrivial exemplar with various stronger properties. Such as being
a strong triangulation, a total stellation, and having more symmetry elements.

4Indeed, it, and the vertex and edge chromatic numbers, are the only small colour-related items to make it into
these tables. The larger colour-related item tabulated there is the chromatic polynomial.
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Figure 10:
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5 The Fano configuration as a citizen of Kallista
Pointer 3 It is a Steiner triple system.

Pointer 4 It is a block design.

Pointer 5 It is a matroid, and furthermore distinguished as a minimum binary-and-non-regular
such. Which honour it shares with its own dual...

Remark 1 All of the above structures correspond to large active research fields within Combina-
torics.

Pointer 6 The Fano configuration has a large Projectively significant-symmetry group: PGL2( 3,R )
of order 168 . Which aspect is unfortunately lost by the Fano graph, whose symmetry group is just
S3 = D3 , of order 6 [23].

PGL2( 3,R ) furthermore manages to be a simple group: it contains no nontrivial normal subgroups.
Simple groups are key in Group Theory’s classification of the finite groups. PGL2( 3,R ) is quite
famous as marking the end of the first ‘simple group desert’. For it is the smallest simple group after
the basic and long-known alternating permutation group A5 , of order 60 ... On the one hand,
Group Theorists have a neat way of constructing this group that is intrinsic to their subject On the
other hand, more complicated groups often happen to be found via their action upon some object
or structure. And for PGL2( 3,R ) , this role is played magnificently by the Fano plane!

Naming Remark 3 It remains unclear what could be used as a truer name for the Fano configura-
tion. Firstly in a routes-unbiased manner, which the very strong property smallest projective plane
does not attain. Secondly, since not all of the routes leading to it may have been found yet (though
our notion of truer name is adaptable in the face of new discoveries!) For the Fano graph, for now
we {cS recommend doubly-stellated triangle graph. Generalizing to n-fold-stellated triangle graph
for the stronger – totally stellated – Apollonian graphs.
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