Eigentheory of Combinatorial Matrices
E. Anderson*

Abstract

We consider the R-valued Combinatorial matrices. These are square, say of size K,
depend on just 2 parameters and are symmetric. We classify their consequently real
eigenvalues and eigenvectors. The key feature is an eigenspace of size > k = K — 1.
Which for K > 3 is degenerate, in the sense of having > k > 1 equal eigenvalues.
In the generic case, this rests in turn upon an O(k) symmetry. While in the remaining
isotropic case, all eigenvalues are equal, backed by the full symmetry group available:
O(K) . Finer classification by rank and various notions of signature is also provided.
Given any set of Combinatorial matrices of the same size, they can be taken to share
eigenbases. Modulo a stated caveat, such share eigenspaces as well.

Dynamics’ centre of mass (CoM) hierarchies return the Jacobi vectors as eigenvectors. The
relative such exhibit a network ambiguity which corresponds to the unlabelled rooted bi-
nary trees. At a first glance, this appears to be an instance of Dynamics producing
Combinatorial objects. These eigenvectors turn out however to arise for any Combinato-
rial matrix. By which a more natural perspective is that Combinatorics produces more
Combinatorics, with Dynamics then just enacting a subcase of this.

Flat Geometry’s triangle matrices — or more generally 2-simplex matrices — were presented
in Articles 1-4. Including various Abstract Algebra properties that Ford subsequently
determined to follow solely from these all being equal-K Combinatorial matrices. The
current article extends Ford’s erudite conclusion to further Linear Algebra properties,
mostly of a Spectral nature. Finally Spectral classifications are taken further using Graph
Theory and Order Theory.
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1 Introduction

1.1 Combinatorial matrices, with a first few examples

Definition 1 A Combinatorial matriz [18] isa K x K square matrix of the following form.

T+ y T T
C = v : . (1)
: T
x x r + vy

This is symmetric. x,y € N, Z cover many Combinatorial uses. We however extend to
z,y € R to encompass Dynamics and Linear Algebra use as well.

Naming and Notational Remark 1 Let us term A. Ford’s shorthand notation [71]
C =(z+vy, o)k (2)

Ford’s symbol of the zeroth kind. This is the notation selected for use in the current Article.
Remark 1 We next start to build up a repertoire of specific examples by taking simple cases
within the framework of our incipient choice of parameters x, y . Further examples shall

appear as we develop our main theme: Eigentheory alias Spectral Theory.

Example O) Setting

we find the zero matrices of all sizes K

0 =(0,0)k (4)
Example [) Setting

y =1, (6)

we arrive at the identity matrices

I =(1,0)k. (7)
While relaxing to

=0, y#0 (8)

yields the matrices proportional to each identity.

Example 1) Setting instead

we encounter the matrices of 1s,
1:= (1, 1)k (10)

Each of which we shall refer to as a units matriz .

Now relaxing to
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produces the matrices proportional to each units.

Example T) Next setting

y =1, (13)

we obtain the tracefree version of the units,
T :=(0,1)k. (14)

t is here the trace per unit size: an intensive variable in Physics parlance. The trace itself is
the extensive variable counterpart,
T =Kt =K(z +vy). (15)

Finally relaxing to
t=0, y#0 (16)

returns the matrices proportional to the tracefree units.

1.2 Explaining some notation

Notational Remark 2 Among these, | and T are distinguished as the pieces of 1 that
are irreducible: Representation-Theoretically [21, 43] significant.! We pick Ford’s symbol of
the zeroth kind as the current Article’s notation since this corresponds to expanding each C
with respect to the linear basis (LB) consisting of these irreducibles. So e.g. a coordinate-free
rendition of (1) is

C =t + 2T = (t,2)k . (17)
As an incipient foil, Ford’s symbol of the first kind [71]
C =yl + 21 = [y, 2]k . (18)

I.e. now in terms of the LB consisting of the identity and the units matrix: 1 and 1 . Indeed,
this bracket being square alludes to using the units matrices. Whereas the roundness of the
zeroth symbol’s bracket amounts to reserving the most commonly encountered bracket for our
most commonly used symbol.

Example V) Having encountered trace via tracefree Combinatorial matrices dropping out of
the above incipient-parameter analysis, the following adapted-parameter condition is natural.
Setting

t= —1, (19)
z =1 (20)
introduces the trace-reversed units
V=(-11)k. (21)
Relaxing to
t= —q#0 (22)

leaves us with the matrices proportional to the trace-reversed units.

I Matrices proportional to the identity also have particular Representation-Theoretic significance through
entering Schur’s Lemma.
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Notational Remark 3 A second foil notation is then espied. Ford’s symbol of the minus-oneth
kind [71]
C = (y+ 2z)l + 2V = (y + 2z, 2)k (23)

corresponds to the LB consisting of the identity and the trace-reversed units matrix: 1 and
V. This is the minus-oneth symbol in the sense of being the reflection about the zeroth symbol
of the first symbol. As an ‘image’ of a type of piecewise-linear bracket — square — it is then
denoted by another type of piecewise-linear bracket: the chevron.

Naming Remark 2 Irreducible, units and trace-reversed cases of Combinatorial matriz sym-
bols are respectively truer names for the above three symbols.

1.3 Outline of the rest of this Article

We introduce the notion of arenas [62, 54, 63] in Sec 2, with Combinatorial matrix [71] and
widely-used Linear Algebra [10, 47, 51] examples. We classify Combinatorial matrices’ eigen-
values and eigenspectra in Sec 3. And their eigenvectors and eigenspaces in Sec 4. Including
the paradigm shift from N-body problem terminology and conceptualization to the general
Combinatorial matrix setting. Sec 4 includes pointing out that any Combinatorial matrices of
the same size can be taken to share eigenbases. Modulo a caveat in Secs 4 and 5, they share
eigenspaces as well.

In the process, further Algebraic and Geometric examples of specific Combinatorial matrix are
pointed out. These include the 3 triangle matrices (more generally 2-simplex matrices) in
Article 1. T pointed out a number of Abstract Algebra and Linear Algebra properties of these
in Articles 2 to 4. In Article 5, A. Ford demonstrated that these Abstract Algebra properties
follow purely from their being Combinatorial matrices of the same size, rather than in any way
being Geometrically specific. The current Article reaches the same conclusion for their Linear
Algebra — more specifically Spectral Theory — results.

Appendix A serves to condense most of Sec 3 and 4’s results. The remainder — the paradigm
shift — enters instead the Conclusion (Sec 5)’s comparison table. Finally Appendix B takes
the classification of eigenspectra further, using Order Theory [62, 33, 40] and its underpinning
Graph Theory [38].

2 Arenas

Structure 0 Given a type of Mathematical object, the corresponding arena is the space formed
by the totality of Mathematical objects of this type. What topologies are natural to each arena
is then always a good question. So via arenas, Modern Applied Topology [62, 54, 63] becomes
adjacent to every other STEM subject, or indeed to every other subject with at least some
objects sharply-defined enough that we can contemplate what their arenas are.

2.1 Arenas of Combinatorial matrices

Definition 0 Focusing this modern Applied Topology line of thought on our main subject
matter, R-valued Combinatorial matrices form the arenas

Mg (K)
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for each fixed K . The cumulative arenas
K
CMR[K] = [p _ o CMR(P)
up to whichever fixed K . And the fully cumulative arena

Cm[ﬁ = Cm[R[OO]

2.2  Vector spaces

Remark 1 Both for the Readers’ convenience and as regards developing our subject matter,
various examples of arenas that entered widespread use long before the advent of modern
Applied Topology are pointed out in the current Article.

Example 1 Vector spaces [10, 44, 55, 79] U over R are our first such: the arenas of all
R-valued vectors with a given number of components. Where relevant, we shall index these
by their dimension, ¢ = R . Vector spaces are more generally the arenas of whichever
objects that are meaningfully represented by vectors. So e.g. polynomials, matrices under
addition and multiplication by a scalar, and functions [48] are also covered.

Structure 1 We have the good fortune that [71] the COMg(K) are vector spaces, and, addi-
tionally, for K > 2 | are copies of the same vector space. This occurs via each Combinatorial
matrix being described by just 2 parameters — our incipient choices for which are  and y ,
both of which are active for K > 2 . These can each take arbitrary values in R . Yielding

the common vector space
Mr(K > 2) = R?. (24)

This accounts for why the 3 LBs mentioned above each have 2 elements.
For K = 1 , Combinatorial matrices collapse to just numbers. With only 1 active param-

eter: the one that becomes the intensive version of the trace, ¢t = =z + y . Yielding the 1-d
vector space R' over R ,i.e. just R itself:

Mg(1) = R' = R. (25)

Here all 3 symbols’ bases collapse to just 1 = 1 . Finally K = 0 is exceptional in that
the sole object supported here is the unmatriz, which in many ways is not a matrix at all
[79, 76]. While the unmatrix contains just an empty set’s amount of information, the set of
unmatrices itself constitutes a point. So identifying this as the zero point, it is possible to view

(Mx(0) = R = {0} : (26)

also a vector space. Here all 3 symbols’ bases collapse to the empty set.

Remark 2 Thus also the CMg[K]| are disjoint sums of vector spaces. With < 3 types of
vector space present, due to the swift onset of the persistent R? vector space.

Hence
cmR[O] = RO = {O} ’
CMg[(1] = RO u R = {0} u R, (27)
Mg(K] = RO o R o [_,R2 = {0} noRu [[_,R.
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Where the last result holds for each K > 2 , with
k=K —1. (28)
This immediately extends to describing CIg as well:

Mg = RO u R o [[7_ R = {0} u Ru [[;_,R? (29)

2.3 Eigenspectra, multiplicities, and eigenspaces

Definition 1 Let ). denote some eigenvalue [44, 10, 55, 36, 70, 47, 45, 79, 12, 37, 51] of a
size-K square matrix M . The Algebraic multiplicity [10, 20, 51, 36, 47, 79] a. of A, is
the number of times that this occurs as a root of the matrix’s characteristic polynomial.

Structure 2 The totality of eigenvalues for our matrix form its eigenspectrum,
Cspec(M) = {Xc|le =1 to E} = X\ D Vo (30)

Let us call the multi-set version of this with Algebraic multiplicities included the multi-

etgenspectrum
PN AE
Mespec(M) = o ap (31)
Eigenspectra are also arenas, albeit, for finite matrices, they are rather structurally simple
ones.

Structure 3 Let us denote eigenvectors corresponding to A, by wv., . So as to form a
linearly independent (LI) set that is as large as possible. Le. a LB for the eigenspace €ig, (M)

corresponding to A, . In some cases, this is of dimension «, , while in others, not as many LI
eigenvectors as this can be found. This deficit is measured by the following further multiplicity.

Definition 3 An eigenvalue A.’s geometrical multiplicity [10, 20, 55, 45, 36, 47, 79] . is the
dimension of its corresponding eigenspace,

Yo i= dim(@ig,(M)) . (32)

Structure 4 There is also a larger notion of eigenspace:

Cig(M) := P (M. (33)

e € espec(M)

These smaller and larger notions of eigenspace are somewhat more structured simple and
widely-used examples of arena. Their structure lies well within basic Linear Algebra, consisting
of vector subspaces and direct sums thereof respectively.
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3 Combinatorial matrices’ eigenspectra

3.1 Eigenvalue degeneracy due to symmetry

Naming Remark 3 This involves one of two unrelated uses of ‘degeneracy’ used in literature
on Spectral Theory and its applications. Namely, the one that is often found in Quantum
Mechanics (QM) [34, 17, 16, 52] and Mathematical Physics [14]. Its Linear-Algebraic diagnostic
is that Algebraic multiplicity «, > 1 for some eigenvalue A, .

Classification Theorem 1 for Combinatorial matrices)

G) A Combinatorial matrix’s eigenspectrum consists of the following.
z = Ko + y with a, = 1, (34)

y with oy = k, (35)

Unless the Combinatorial matrix is of one of the following exceptional kinds.

D

z =0, (36)
for which the sole eigenvalue is
y with oy = K . (37)
U)
K =0, (38)

for which there are no eigenvalues at all.

Notational Remark 4 Let us henceforth index these eigenvalues by their Algebraic multi-
plicities! Let us also denote the C' of type G) by G and those of type I) by I .

Remark 1 These exceptional cases arise from the following argument. For K > 2 , k > 1,
so both eigenvalues are realized (not necessarily distinctly). The linear equation for equal
eigenvalues is then

K +y=2=uy. (39)

Which cancels down to
Kz =0. (40)
And which of course admits 2 solutions: * = 0 and K = 0 . The first is meaningful:

isotropy. While the second is spurious, for our linear system was only defined for K > 2 .
Finally, one needs to append the 2 cases excluded by the argument.

For K = 1 , kK = 0 . Since this was to be the Algebraic multiplicity of the eigenvalue v,
here this eigenvalue does not occur at all. This gives a rather trivial realization of isotropy:
since there is only 1 direction, every direction must be the same!

While K = 0 — the unmatrix — has no room for any eigenvalues. So the unmatrix realizes
the uneigenspectrum: an incarnation of the empty set () consisting of no eigenvalues... Also it
comes to pass that the above spurious solution coincides with a non-spurious appended case.
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The unmatrix even manages to be isotropic in the even more trivial sense that all directions
are the same whenever there are no directions. For all that this realization merits the qualifier
unisotropic [so long as this is not confused with the much more widely used anisotropic...]

The generic case G) of the theorem is covered in e.g. [61], without mention however of the
exceptional cases I) and U).

Remark 2 In the generic case G), K > 2 exhibitsa k|1 partition of the underlying vector
space, as labelled by eigenvalues, into the corresponding eigenspaces.

K = 3 is minimum for this partition to be into larger and smaller pieces: 2|1 (Subfig c).
And thus is also minimum to have a dimensionally-nontrivial eigenspace: dimension > 2
These features clearly persist for all subsequent K .

In contrast, case I)’s the eigenspace is unsplit: a maximally coarse-grained 1-piece partition
K. Finally for case U), the eigenspace is the unpartition of the empty set!

kok %

Remark 3 The current subsection’s notion of degeneracy is furthermore indeed underpinned
by symmetry. This point is particularly emphasized in the QM literature [34, 17, 16, 52] for the
ground-state energy eigenvalue of the Hamiltonian operator. Each realization of this notion
can then be indexed by the corresponding symmetry group.

In case I), the corresponding total isotropy group is realized; indeed 1) is intended to denote
total isotropy. All Combinatorial matrices are symmetric, and ours are real-valued. Thus we
enjoy the real-symmetric combination. For which the total isotropy group is the orthogonal
group O(K)

While in case G), this is restricted to the next-largest partial isotropy group: O(k) . Which
manifests a continuum amount of degeneracy for K > 3 and thus & > 2 . G) denotes
that among real Combinatorial matrices, this constitutes the generic case.

We have already in effect pointed out that exceptionally for K < 1 | it is isotropy that is
generic.

U) is sufficiently distinct to merit its own category: it is still totally isotropic, in its own way,
but is not even a Linear Algebra object!

Remark 4 In the above two ways, real Combinatorial matrices are highly non-generic within
the space of all (or even all real-symmetric) square matrices...

Remark 5 The isotropic condition =z = 0 replays a condition used in Sec 1. It corresponds
to 2 examples there: O and ¢l . The current Subsection does not have the means to
distinguish between these two cases, while the next does.

Remark 6 Let us also introduce the 0-symmetry-degeneracy fractions

Qe
Ae = X



Ann. Inst. Theory STEM 1 6 (2025) Eigentheory of Combinatorial Matrices

Clearly for whichever set of partitioning fraction variables? the total sum of fractions is unity:

oA =1, (41)

Cspec(M)

In case G), this reads

Al + A, = 1. (42)
While in case I), this just becomes the identity 1 = 1 |, via ax = K .

3.2 Non-full rank

Remark 7 We consider here a size-K matrix’s counts of zero and nonzero eigenvalues by
Ky and K, respectively. These exhaustively obey
Ky + K, = K. (43)

Ky constitutes a further notion of degeneracy. By the above equation, one could just as well
conceptualize that K, constitutes a such. Ky furthermore meets the definition of nullity,
and K, of rank; in effect, these provide Spectral reformulations of these basic Linear Algebra
notions. The above equation then amounts to a simple Spectral proof of the rank—nullity
theorem [10, 36, 44, 55, 54, 79]. The current subsection’s notion of degeneracy is can then
be characterized as non-full rank or, equivalently, non-empty kernel: in the form of the zero-
eigenvalue count.

Let us also introduce the 0-eigenvalue degeneracy fraction

Ky
Ko = N7
And the 0-eigenvalue nondegeneracy fraction
K = e
£ =
Which of course obey
Ko + K = 1. (44)

Thus casting the rank—nullity theorem into ‘mass fraction’ form.
Classification Theorem 2 for Combinatorial matrices

The isotropic case I) now splits into 2 subcases as follows.

Rank 0)

y =0, (45)
yielding the zero matrix

0= (0,0)k.
For which the eigenvalues are all 0 . ILe.
0 with ax = K : K, =0 and Ky = K. (46)

And rank K)

y #0, (47)

2Compare for instance mass fractions in Physics and Dynamics, and partial-pressure fractions in Physics
and Chemistry.
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for which we have a matrix proportional to the identity,
ql, ¢ # 0. (48)

Here the eigenvalues are
g with ax = K : K, = K and Ky = 0. (49)

The generic case G) also contains 2 subcases that manifest zeros.

Rank 1)
y =0, Koz #0. (50)
These are the matrices proportional to the units matrix®
1 = (1, 1)[{ .
So now
ql, ¢ # 0. (51)
Its eigenvalues are
0 with A = k K() = k. (52)
Kz with ay =1 : Koy = 1. (53)
Rank k) Now
z =Kz +y=0, y#0. (54)
Returing the matrices proportional to
P = K (k —1)g (55)
For which the eigenvalues are
0 with g = 1: Ko = 1. (56)
And
y with a = k. (57)

G) contains furthermore a zero-free case: rank K . Here
K, = K and Ky = 0.

Remark 8 For K = 0 , the unmatrix has no eigenvalues and thus no capacity to exhibit
zero eigenvalues.

Remark 9 The current Subsection partners the linear equation
r =0
— shared with Secs 1 and 3.1 — with the following new linear equation.
z =Kz +y=0. (58)

These are also the 2 ways in which detC = 0 determinant and thus that C can be
singular.

Compare (58) with Sec 1’s zero-trace equation (12); both determinant and trace are invariants.
In fact, for K = 1 , t = 0 and z = 0 coincide. This reflects that K = 1 are just
the numbers, which do not support distinct trace and determinant...

3This matrix occurs in Graph Theory and also in the role of identity for the element-wise product of matrices.
See Subsec 3.3 for a further special Combinatorial matrix proportional to this one.

10
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3.3 Combinatorial projectors

Structure 5 At the level of eigenvalues, a proper projector [36, 45, 47, 29, 79] has eigenvalues
0 and 1 . Since this is a specialization of having 2 distinct eigenvalues, it is compatible
with class G). And more specifically with zero-count degenerate such.

Remark 10 There are 2 orders in which a Combinatorial matrix can implement such eigen-
values at the level of a linear system of equations. Firstly,

z2 =Kz +y=0, y=1. (59)
Which is solved by
P(K) = K ' (k, -1k . (60)
Secondly,
z =Koz +y=1, y=0. (61)
Which is solved by
P (K) = K'(1,1)g = K'1. (62)

Remark 11 We already encountered P(K) in the previous subsection; we have now estab-
lished that this is a projector. While P, (K) is the special Combinatorial matrix alluded to
in footnote 3. Since Combinatorial matrices are symmetric, and we have taken them to be
R-valued, projectors in this context are automatically orthogonal [36, 45, 47, 29, 79]. Finally,
P, (K) is the orthogonal complement of P(K) .

3.4 Combinatorial involutors

Structure 6 At the level of eigenvalues, a nontrivial involutor [13, 76] has eigenvalues +1.
Again, this is a specialization of having 2 distinct eigenvalues, which is thus compatible
with symmetry-generic Combinatorial matrices. Now more specifically with the zero-count
nondegenerate case.

Remark 12 There are 2 orders in which a Combinatorial matrix can implement such eigen-
values at the level of a linear system of equations. These can now be jointly posed and solved
as follows.

z =Kz +y= 1, y = F1. (63)
Which are solved by
+J(K) = +K ' (2 - K,2)k . (64)
k ok ok

3.5 N-body problem subcase of Combinatorial matrix eigenvalues

Notational Remark 5 For this let us use the notation N in place of K .

Structure 7 Here one has a constellation of N points-or-particles in R¢ space. Given a
possibly transient absolute origin, each point-or particle has a position vector relative to this.
The space of all possible constellations is the configuration space [11, 23, 57] constellation
space,

q(d; N) = RN,

11
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Each point-or-particle can also be allotted a label. The space of all possible LCs of point-or-
particle labels — position labels — is constellation label space,
£q(N) = RV

One then passes to separation vectors between points-or-particles. Absolute origin dependence
cancels out of these.

Structure 8 The space of all linearly independent (LI) separation vectors is the configuration

space relative space
NRel(d, N) = RN,

Naming Remark 4 This name is used in e.g. [57, 76], with reference to an LI set of relative
separations or of relative differences.

Remark 13 Each separation in an LI set can be allotted another label, now with values
running from 1 to

Ni=mn—1. (65)

The totality of LCs of which form in turn relative label space,
L£Rel(n) = R™.

[67, 76] explain how the above £ versions are active factors in the corresponding multi-index
tensor product £ -less versions. Passing to PRel(n) and £9Rel(n) amounts to quotienting
out translations, Tr(d) . Various further simple quotienting procedures [32, 35, 57, 73, 76]
permit handling dilations and 2-d rotations.

Remark 14
P(N) := N '(n,-1)y . (66)

shall be interpreted as a projector in Sec 4.2. Our first of many names for this is positions-
to-relative separations matriz at the level of the internal labels [57, 76]. A second is Lagrange
matriz [4, 57, 76]. For all that P is numerically, and yet not Physical-dimensionally, equal

to the equal-masses case of this [65, 76]. For N = 3 | the above specializes to
1
P = (2,-1). (67)

3.6 N-vertex and n-simplex cases, with triangle or 2-simplex ex-
amples

Remark 15 These refer to two ways of describing the Geometrical counterpart of the N-body
problem. Within the translation and rotation quotiented setting, the following are natural for
N = 3.

A) Apollonius’ theorem [1, 28, 53, 76| for expressing a triangle’s median lengths in terms of
its side lengths. The Euler 3-cycle — over sides — of this can be expressed as a matrix equation
[68, 64, 76]. Whose matrix turns out to be proportional to an involutor: the Apollonius

involutor,

J = %(-1,2). (68)

A functional alias for this is sides-medians length-exzchange involutor. Medians, and J , can be
defined to transcend to [76] arbitrary dimension — whether spatial or configuration-occupying

12
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—So J is more generally a 2-simplex matrix. We finally recognize this as the J(3) subcase
of (64).

B) Heron’s formula [2, 13, 46, 56, 76]. The square of this, when viewed as a quadratic form,
is built out of the following matrix.

F = (-1,1). (69)

This was first phrased in linear system form by Euler [3] and first explicitly written down
as a matrix by Buchholz [26]. At which level the names Heron matriz or, more functionally,
sides-data triangle area formula matriz, are suitable.

Article 2 however subsequently pointed out that this also occurs in the Euler 3-cycle of cosine
rules, and even of triangle inequalities. By which the name fundamental triangle matriz [64]
and the notation F are more appropriate. Its fundamentality [58, 65] is further warranted by
its ties to Hopf’s little map [8, 41, 42, 77]. It furthermore transcends to [76] arbitrary dimension
— whether spatial or configuration-occupying — sealing our final name for it: fundamental 2-
simplex matriz. We also recognize this as the V(3) subcase of the trace-reversed Combinatorial
matrix (21).

Structure 9 (67, 68, 69) are the 3 triangle matrices, or more generally by transcending
arbitrary dimension, the 3 2-simplex matrices. In each of their equations, we have dropped

the K subscripts since they are all 3 ’s).

Remark 16 Allof T, J, F and P for N = K > 2 are generic in sense G). P is of
the rank-k subclass, while the other 3 are of the rank-K subclass.

Remark 17 Among the N = K = 3 matrices, P is the only projector of rank 2 .

J is one of the two signs of nontrivial involutor.

F' is the trace-reversed matrix.

Thus our purely Algebraic considerations manage to find all of these. For all that these consid-
erations do not single them out among various other involutors, projectors and Representation-

Theoretically privileged matrices.

Remark 18 Every projector B can be associated with an involutor K according to [10]

K =2B — 1. (70)
For P(N) , the corresponding involutor is — J(N) This includes the 2-simplex CoM
label-removing projector P pairing with minus the Apollonius involutor, —J . So

J+2P =1. (71)
k ok %

13



Ann. Inst. Theory STEM 1 6 (2025) Eigentheory of Combinatorial Matrices

3.7 Real-symmetric matrices’s eigenvalues

Notational Remark 6 Let us denote the arbitrary real symmetric matrix by S .
Remark 18 It is well-known that all eigenvalues of S are real.

Remark 19 It is thus meaningful to allot a sign to each. Whether + or — for each nonzero
eigenvalue. Or + | — or 0 for every eigenvalue: the 3-valued notion of sign.

3.8 Physicists’ signatures

Notational Remark 7 Let K. denote the counts of positive and negative eigenvalues
respectively. In each case with Algebraic multiplicity included. Let
+

So that
Ko + Ko + K- =1.

Also for matrices of nonzero rank — K, # 0 — define the nondegenerate sign fractions

K
ND:t = K:t .

So that
Ko + K« (NDy + ND_ ) = 1.

The K, are furthermore reflectively-symmetrically defined. To the extent that which is +
and which is — is often taken to be a convention.*

Thus
AK = Ky — K_

is in some ways a more meaningful difference than
0K = Ky — K. .

Hence the difference in notation. A is moreover not only reflectively-symmetric but also a
proto-index.®

A K is furthermore (one sign convention choice of) the Physicists’ signature in summary. The
signature in detail exhibits how many + ’s, — ’sand 0 ’s are present. E.g. — + 4+ + for
one sign convention for Minkowski spacetime. Or + 4+ + 0 for the 4-body problem’s CoM
label removing projector P ... This notation is used in Fig 2, with a truncated version of it
in Figs 4 and 6. More efficiently especially for much larger examples, it is Korner’s [50] triple
of signs

(Ky, K_, Ky) .

Though S. Sénchez’ presentation [60]
(K07 K., A K)

43S0 in Special Relativity, spacetime is modelled with — for time and + for space or vice versal

5This is in the sense of index theorems; compare the Poincaré index formula [24]. The rank-nullity [79],
Gauss—Bonnet [80], Riemann-Roch [27] and Atiyah—Singer [25] index theorems. And quite a few basic Combi-
natorics examples in [62] and basic Geometry examples in [76]; see footnote 6 for some examples of each.

14
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is a more elegant sign-space LB choice. Picked so as to manifest the signature-in-summary
proto-index among its LB elements... This kind of parametrization also permits exhibition of
beloved cases in which K are infinite and yet A K manages to remain finite.

Classification Theorem 3 for Combinatorial Matrices In the generic case G) away from
zeros — rank K — there are for K > 2 4 nontrivial cases for signs of eigenvalues.

++)

y >0, z=Kzx +y > 0. (72)
is positive-definite: all A\, > 0
K, = K
y <0, z=Kz+y<0 (73)
is negative-definite: all A, > 0 :
K =K
+)
y >0, z=Kz+y<?0 (74)

is minimumly indefinite with sign convention
K =1, Ky = k.

—-) is also minimumly indefinite
y <0, Ko +y >0, (75)

albeit with the opposite sign convention:
K =k, K. =1.

With zeros, rank k supports just 2 cases: its single nonzero eigenvalue can be — or + |
giving =+ subcases. Le. respectively

y >0, z=0. (76)
And

y <0, z=0. (77)

Rank 1 also supports just 2 cases: its nonzero eigenspace can be positive- or negative-
definite: 4 subcases. I.e. respectively

y =0, z>0. (78)
And

y =0, 2z <0. (79)
Case I) with no 0’s —rank k — supports just 2 sign choices: positive- or negative-definite:
subcases . Le. respectively

y >0, z=0. (80)
And

y <0, z=0. (81)

Remark 20 While previous subsections have used linear (systems of) equations, we have now
passed to linear (systems of) inequalities.
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Remark 21 K = 2 has both + -) and — +) collapse to the balanced [70, 76] situation:

K+ - K, .
And indeed are minimumly nontrivially balanced:
K, =1=K_.
Balanced entails + <> — symmetry. In the + — case, this has well-documented conse-
quences [15]. For K > 3, however, there is a larger + or — eigenspace. lLe.

Ky > K_ or Ky < K_ |
corresponding to the presence of a symmetry-degenerate eigenspace.
Remark 22 The Physicists’ signature in summary provides the following further interpreta-

tion. Balanced is the corresponding null proto-index condition °
AK = 0.

While the quantifier of departure from balance,
Imbalance(M) = AK ,

is the corresponding nontrivial proto-index.
Also for K = 2 with one zero, both rank k£ and rank 1 subcases conflate to
K, =1=Ky, K. =0.

Or
K. =1=FK,, K. =0.

In contrast, for K > 3 | the rank 1 subcase has
Ky > Ky, K_

I
o

Or
K. > Ko, Ky =0.

We gather up all of the current Subsection’s cases into Fig 2’s end-table.

Remark 23 All of T, J and F are of type G with rank K and signature in detail -+ .

k ok %

Definition 1 [15] A real symmetric matrix with no zero eigenvalues is elliptic if all of its
eigenvalues are of the same sign. Hyperbolic if but 1 has opposing sign. And ultrahyperbolic
ifit has > 2 copies of each sign. Let us use the same adjectives to describe the nondegenerate
sectors of degenerate symmetric matrices.

Remark 24 Ultrahyperbolicity is rather harder and much less well understood [15]. They are
however banished forever from our €9ig arena by i) of the following.

6This conceptual type covers the Euler characteristic on the circle and the tori, and thus Gauss-Bonnet
type theorems thereupon. Grinberg’s theorem in planar Hamiltonian Graph Theory [60, 62], Whose index is
inside-outside triangulation strength imbalance. And which theorem we thus renamed ZIPHoN: ‘zero-index
planar Hamiltonian Necessity’. Varignon’s theorem and Euler’s 3-simplex theorem in Flat Geometry, along
with ‘smaller’ infinite families of generalizations [59, 76]. Whose common index is the left-right child imbalance
in unlabelled rooted at-most binary trees that first enters this area of study as per Sec 4.
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Proposition 1 i) Neither Combinatorial matrices nor their zeros-nondegenerate sectors, can
be ultrahyperbolic.

ii) Combinatorial matrices with non-empty zeros-degenerate sector must have an elliptic or
empty nondegenerate sector.

Proof Such matrices of size K must have a symmetry-degenerate eigenspace of size > k .
i) Thus there is no room to partition signs into 2m pieces of size > 2.
ii) The zeros-degenerate sector uses up 1 sign of eigenvalue. So only 1 sign is left for what

nondegenerate sector there may be. Thus it is either empty. Or nonempty but left with
insufficient sign types to support 2 distinct signs of its own, forcing it to be elliptic. O

3.9 Multiplicity equalities

Definition 1 An eigenvalue is called semisimple [51] if its Algebraic multiplicity coincides with
its geometrical multiplicity.

Remark 25 A matrix is diagonalizable iff all of its eigenvalues are semisimple.

Proposition 2 All the C € Mg

i) have

e = 7 foreach A . (82)
ii) Are diagonalizable.
iii) Enjoy the arena equation

¢ig(C) = Y* = RX. (83)

Proof 1 All of these properties are inherited from the real symmetric matrices. O
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4 Combinatorial matrices’ eigenvectors

4.1 Finite Real symmetric matrices’ eigenvectors

Remark 1 Finite such are well-known to be not only diagonalizable but also diagonalizable
using orthogonal matrices. They furthermore admit orthonormal LBs (ONLBs). And their
eigenbases can be taken to be eigenONLBs. These ONLBs can furthermore be taken to be
complete [48], so we can expand in terms of these without losing any information in the process.

Remark 2 Our CMg(K) inherit all of these features by being finite, real and symmetric.
More specifically, proposition 2.iii) can be viewed as a completeness relation. Le. the Spectral
completeness relation that the eigenvectors of C' form a LB for the whole K-dimensional
vector space that C' naturally acts upon.

4.2 N-body subcase of Combinatorial matrices’ eigenvectors

Remark 3 In this context, the generic G)’s lone eigenvector corresponds to the CoM position
vector’s label R . Corresponding to the normalized version of the vector of 1’s. And whose
linear span (LS) forms the eigenspace

¢ig, (G) = coM(1l) = R.

Remark 4 Also in this context, the generic case’s symmetry-degenerate eigenspace is relative
label space:
Cig, (G) = £Rel(n) = R™. (84)

This can be studied by considering a LB of separations between points-or-particles.

Remark 5 These eigenspaces fit together to form

RY = Cig(G) = ¢ig;(G) @ €ig,(G) = CoM(1) & Dif(n) . (85)
Remark 6 In contrast, in the isotropic case I), there is a single irreducible eigenspace
RY = Cig(I) = ¢igy(I) . (86)
Remark 7 N = 2 is minimum for the above LB to be nonempty.
N = 3 is minimum for this LB to not be non-diagonal. Passing to point-or-particle cluster-

ing separations — between subsystem CoMs — attains diagonality however. In the Dynamics
context, this (non)diagonality is manifested by such as the total moment of inertia and the ki-
netic energy. The corresponding clustering separation vectors have hitherto been called relative
Jacobi vectors [5, 31, 32, 57, 73, 76].

N = 3 is furthermore minimum for ambiguity in labelling clusterings. Here these arise from
how the input points-or-particles are labelled. Corresponding to the number of ways of of
leaving out a single point-or-particle. Or, equivalently, of forming a pair subsystem, whose
relative separation is our current object of interest.

N = 4 is minimum for clusterings to possess a distinct notion of network ambiguities. The

clustering structure can here be H- or K-shaped; these have often been called the Jacobi-H
and -K .
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Remark 8 The inertia and kinetic quadrics in relative coordinates can be modelled using the
Lagrange matrix. We have already linked this to our projector onto relative label space, P .
Thus making contact with Combinatorial matrices and their Spectral Theory.

Remark 9 Given Remark 1, we can now further qualify on the one hand that P amounts to
projecting onto relative label space. Hence the name relative label space projector. Along the
CoM label direction, thus projecting out the CoM label. Projecting along [10] has subsequently
also been described as projecting out. Hence the further name CoM label-removing projector.
And, upon tensoring up, the names CoM-removing projector and relative space projector follow.
The first of which bears some relation to the common practise in Physics of passing to the
CoM frame. And furthermore explains Montgomery’s [73] alias for relative space: centred
configuration space, with reference to centering about the CoM position. This space featured
in e.g. [32, 35] long before the above and Sec 4.2’s references.

On the other hand, the orthogonal complement projector P projects onto the CoM label
space.

Naming Remark 5 A truer name for relative Jacobi coordinates is eigenclusterings [59, 57,
76).

ko k%

Remark 10 P is generic in sense G), so the full underlying symmetry is O(n) . In the
N-body problem context, these have been termed internal rotations, alias democracy trans-
formations [31]. These are internal in the sense that they act not on space but on the internal
space of point-or-particle labels. By sending eigenONLBs for fRel(n) to other eigenONLBs.

Remark 11 The above features attributed to N = 2 to 4 are all persistent. Both types
of ambiguity are furthermore increasingly persistent. Network ambiguity is indexed by [39, 67]
the unlabelled rooted binary trees (URBT) [38, 49, 62]. Whose counts are [67] the Wedderburn—
Etherington numbers [6, 9, 22, 74]. While the labelling ambiguity goes like the sizes of the
corresponding orbits of the permutation group Sy acting on the labels.

Structure 10 Each N > 1 supports a generalized-K eigenONLB of relative Jacobi vectors.
The generalized-K corresponds to each N supporting an URBT which, upon defoliating once
[67], is the straight path P,, [67]. Aside from Pj3 corresponding to K-shaped clustering, Ps
is T-shaped: side and corresponding median. While P; just involves the incipient point-or-
particle separation, and Pg is just the ungraph presentation of the empty set. This said, we

do not need a clustering conceptualization to understand N = 1 to 2 . This is by replaying
the above minimum cases, in the form that N = 2 supports no clustering other than its
sole separation. And that N = 1 supports no separations at all!

Remark 12 Take any eigenONLB (of relative label space!) of relative Jacobi vectors and
adjoin R . This forms the corresponding eigenONLB (now for all of U ) (absolute) Jacobi
vectors, alias eigenclustering vectors with CoM position adjoined. Hitherto, in the Dynamics
literature, the Jacobi vectors have been associated with CoM hierarchies. Which can be re-
formulated as choices of eigenONLB for the Lagrange matrix, and thus for the relative space
projector P. Which exists for any N-body problem in any R? .
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Remark 13 When the full O(N) is present, it sends ONLBs of
cigy(I) = Cig(I) = ¥V = RV .

to other ONLBs.

4.3 Generalization to any Combinatorial matrix

Remark 14 Let us now shift away from the above context to Combinatorial matrices in full
generality. The generic G) case’s lone eigenvector U corresponds to the sum of the counts
acted upon. Or equivalently, given subsequent normalization, the average of the counts (AoC).
Whose LS forms the eigenspace

¢ig; (G) = aoC(l) = R.

Remark 15 Relative separation labels of pairs of point-or-particle positions become differences
between counts. Now forming the generic G)’s symmetry-degenerate eigenspace difference
space

¢ig, (G) = Dif(k) = RF. (87)

This can be studied by forming a LB of differences between counts.

Remark 16 These eigenspaces fit together to form

RY = Cig(G) = ¢ig,(G) @ ¢ig,(G) = MoC(1) © Dif(G) . (88)
Remark 17 In contrast, in the isotropic case I), there is a single irreducible eigenspace
RE = Cig(I) = ¢Eigp(I) . (89)

Remark 18 For K > 3 | the above LB of differences is not diagonal. Passing to LCs of
these — count subset differences: between 2 subsets’ counts — attains diagonality however.

Naming Remark 6 Given this more general context, combinatorial-matrix eigenvectors, or
for short eigencombinatorial vectors, is in turn a truer name than eigenclustering vectors.

Remark 19 K = 3 is minimum for ambiguity in labelling differences of counts. Here
these arise from labelling the input counts. 3 labellings of differences of counts are possible.
Corresponding to the number of ways of of leaving out 1 count. Or, equivalently, of picking
2 counts to form a difference out of.

Remark 20 P now amounts to projecting onto difference space, hence the name difference
space projector. Projecting out AoC direction space, hence the further name AoC-removing
projector. P mnow complementarily amounts to projecting onto AoC space, hence AoC space
projector. Projecting out difference space, hence also difference space-removing projector.

ko k%

Remark 21 Take any eigenbasis of eigencombinatorial vectors and adjoin U . This forms
the corresponding extended basis of eigencombinatorial vectors with CoM position adjoined.

Remark 22 The eigencombinatorial vectors exhibit the same network ambiguity of URBT
form as described above.

20



Ann. Inst. Theory STEM 1 6 (2025) Eigentheory of Combinatorial Matrices

Proposition 4 Any K > 1 Combinatorial matrix can be equipped with an extended
generalized-K eigencombinatorial eigenbasis.

Proof 2 A generalized K is available for all K [67] as the straight-path P, URBT. Form
the difference between a first pair of objects. Next form the difference between the sum of these
and twice a third object. Apply this move recursively between the sum of the first & — 1
objects used and & — 1 times a kth object. Finally adjoin U . O

Proof of proposition 2. i) Using the K LB, 7. = a. for each A, . ii) and iii) then
separately follow from i). O

Exercise 1 Prove proposition 3.
* k%

Remark 23 In the case of a general network, each step uses rather the difference between
left- and right-child sums. For the N-body problem subcase, this specializes to left and right
clusterings’ masses.

Remark 24 The URBT ambiguity was long known to arise from CoM hierarchies: Mechanics
to Combinatorics ([39] and the literature survey in an Appendix of [67]). A more natural
perspective is that general Combinatorial matrices give further standard Combinatorial ob-
jects as their eigenvectors. Dynamics’ CoM hierarchy then produces Combinatorial objects by
enacting a subcase of this. We have thus passed to a purely Combinatorial explanation.

Remark 25 Eigencombinatorial eigenbases are but a measure-0 subset of the possible eigenONLB.
This is based upon the relative sizes of the finite permutation subgroup Sk versus the infinite
orthogonal group O(k) corresponding to allowing all R-LCs.

Naming Remark 7 So far as the Author is aware, the Combinatorial literature has not
pinned a name on this generalized setting for what Molecular Physicists call internal rotations
or democracy transformations. ‘Internal’ here refers to LI relative separation labels. So a nat-
ural name for the Combinatorial counterpart is count-difference rotations. Acting by sending
eigenONLBs for Dif(n) to other eigenONLBs.

Remark 26 When the full O(K) is present, it sends ONLBs of
Cigy (I) = Cig(I) = VX = RE .

to other ONLBs.
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4.4 Eigevector classification

Classification theorem 3 for Combinatorial matrices With reference to a cover by some
of the above-defined cases, a Combinatorial matrix’s normalized eigenvectors take the following
corresponding forms.

G) The normalized unit vector. Alongside any normalized LB choice of LCs of count-difference
vectors.

I) Any normalized LB for R¥ will do.
U) The uneigenbasis consisting of an empty set’s worth of eigenvectors.

Proof G). For the lone eigenvalue, the eigenvector equation is
(—kzx,x)g -x = 0. (90)

Which is solved by

Finally divide by the corresponding normalization factor

(92)
For the other eigenspace’s eigenvalue,
z1-x = 0. (93)
Which is solved as claimed.
I) The eigenvector equation now reads
(0,0)k - = 0. (94)

Which places no restrictions on what x can serve as an eigenvector.

U) Now there is no eigenvector equation, but no vectors to restrict either. The restriction of
the empty set @ by the ( empty set of equations ) is of course just 0 again. O

4.5 Sharing eigenbases and eigenspaces

Corollary 1 Any generic set of same-size Combinatorial matrices can be taken to share eigen-
basis.

Proof For K = 0 , all must be copies of the unmatrix, and thus share the same empty set
of eigenspaces.

For K > 1 , by theorem 3 any LB for R¥ will do for class I). Thus pick the extended
version of the generalized-K LB so as to match class G). O

Remark 27 In Fig 3, this alignment is drawn out using green for I)’s single eigenspace versus
blue and yellow for G)’s pair.
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Proposition 5 Suppose that we are given a set of size-K Combinatorial matrices. Then they
share eigenspaces iff either of the following hold.

K <1
ii) K > 2 and they are either all generic G) or all isotropic I).

Proof For K = 0 , each matrix in the set can only be a copy of the unmatrix. All of which
share the same eigenspaces: no eigenspaces at all!

For K = 1 ,only 1 eigenspace can be realized and thus must be shared by all.

For K > 2 | two cases work out. Firstly, a set of isotropic matrices I) with the same K

shares the same K-fold eigenspace. I.e. the whole vector space acted upon. Secondly, a set of
generic matrices G) with the same K share the same 1-d eigenspace in each case with the
same k-fold complement. The remaining case — sets containing > 1 G)and > 1 I)do
not work out, by concurrently realizing both the split and the unsplit eigenspaces. O

Corollary 2 Our 3 2-simplex matrices
i) possess a shared eigenbasis, which can be taken to be the extended version of T .
ii) They share eigenspaces.
Proof i)

All of the 2-simplex matrices are Combinatorial and of the same size K = N = 3 .
So theorem 3 gives that they share eigenbasis. And that this can be taken to be the exten(c?jc)i
generalized-K eigenbasis. Which for K = 3 is the extended T .

ii)

All of the 2-simplex matrices are furthermore generic G) . (96)

So proposition 5 = they share eigenspaces. O
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5 Conclusion

Remark 1 The current Article has thus replaced Articles 2 to 4’s piecemeal Geometrical con-
siderations of the Linear Algebra properties of the 2-simplex matrices P, J, F' . Paralleling
Ford’s [71] observations that the 2-simplex matrices’ Abstract Algebra properties — commu-
tators, and simple products leading into commutative monoids — follow just from their being
Combinatorial matrices of the same size. Proposition 5’s condition “ K > 2 and they are
either all generic G) or all isotropic I)" is the caveat alluded to in the Abstract and Introduc-
tion. By this, the current Article is not quite as clean as Ford’s, in which any Combinatorial
matrices of the same size will do. But for the 2-simplex matrices, (95) guarantees K > 2 .
While (96) guarantees the all generic G) subcase. So our parallel is secure.

Remark 2 Also, unique specifications of P and J as a particular Combinatorial matrix
projector and involutor follow from whichever of Ford’s account and the current one.

Remark 3 We form a comparison table in Fig 1 for the current Article’s paradigm shift from
N-body problem use of Combinatorial matrices to general use. A large part of the theory
of centres of mass (CoM) is thereby reduced to purely a matter of Combinatorics. And we
have a precise name for what Physicists’ ‘hierarchies of subsystems’ CoMs’ are. l.e. one very
specific realization of the unlabelled rooted binary trees (URBTs); see [67] for the precise
correspondence. With each CoM’s 2 input subsystems being the right and left children of
that CoM as viewed as a node.

Remark 4 We summarize many of the current Article’s other results so far in Appendix A.
And take our study of Spectral classification for Combinatorial matrices further in Appendix B.
This is by use of Order Theory alongside more structurally sparse Graph Theory undepinning
this.

Pointer 1 Combinatorial matrices are often taken to be N- or Z-valued in Combinatorics.
Thus forming the arenas €Ny and €Nz . The current Article’s analysis extends to €
for its Dynamics and Geometry significance, and Linear Algebra specifics of our workings. Let
us leave the yet more general C9lc for another occasion.

Pointer 2 As regards mn-simplex matrices, some remaining open questions are as follows
[68, 69, 72]. Which sets of same-size quadrilateral matrices commute, form multiplicative
commutative monoids, share eigenspaces and share eigenbases? For here not all of the matrices
in any of these sets considered are Combinatorial...

Acknowledgments I thank K. Everard for working with me on rather more general and larger
accounts of Eigentheory, starting with [70]. A. Ford for motivation and the challenge to write
this Article. S. Sanchez for previous discussions, which shall be further brought to bear on
the larger works, and in particular for teaching us Order Theory. And other participants at
the “Linear Algebra of Quadrilaterals" Summer School 2024 at the Institute for the Theory of
STEM, and at the Applied Combinatorics and Topology Discussion Group. And the Referees
for insisting on Sec 4.2-3’s paradigm shift being worked out and Fig 1’s comparison table for
this being provided.
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Wheelerian comparison table

Notions Aoty N—vet:tex #-simp lex General Combinatorial matrices C
matrices matrices matrices .
of size K
—_—
Dynamics Geometry Combinatorics
In particular the equal-masses
Lagrange matrix, L ,
which is numerically equal to Two specific cases among which are
CoM label-removing projector P. the average-of-counts removing projector P .
Examples

Whose complement is the
CoM label projector P, .

The Apollonius involutor J
and the fundamental 2-simplex matrix F
also appear in Geometrical study

And its complement the
average-of-counts projector P; .

We do not however need P
in order to develop the theory.

Average-of-counts direction space (loC(1)

Eigenspaces: lone CoM label direction space  CoM(1) —1>
[A 2025]
symmetry- Relative label space £93el(n) —> Difference space  Difi(k)
degenerate [1990s?] [A2025]
ei—;ztilz:z,tzrfs' \ Jacobi vectors
traditional name i GEmi]
Degenerate space's ati .
cigenvectors' Relative Jacobi Victors
traditional name [19?05 7
D t ! . Y . .
egfr:sijeit?r?e s Eigenclustering vectors i Eigencombination vectors
& : [SA2018] [A2025]
conceptual name
Totality of ] ; Eigencombination vectors
. Eigenclustering vectors
eigenvectors: —1> extended by average-count vector

conceptual name

extended by CoM vector

[A2025]

Network ambiguity

H versus K network ambiguity for N =4

[19th century]
Unlabelled rooted binary trees: Unlabelled rooted binary trees:
Mechanics Combinatorics
producing producing more
Combinatorics Combinatorics
[e.g. S 2002] . [A2025]
Now however explained as
a subcase of
Combinatorics
producing more
Combinatorics
[A2025]
Labelling ambiguity Sy orbits Sy orbits
Full ambiguity: O, 0k _
generic case G) called internal rotations now named count-difference rotations
or democracy transformations [A 2025]
\
Isotropic case I) O(N) O(K)
Figure 1:
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A Eigenvalue and eigenvector classifications

Remark 1 We condense many of Sec 3 and 4’s other results into tables 2 and 3 respectively.

I Classification of Combinatorial matrices'eigenvalues
. Notions of signature
) Eigen- . Ex: ] Not
Symmetry class| Rank Nullity P otes
values
SMath Sphys SPhys-detail
K K
z 1y ot elliptic
K -K Nondegenerate
1 k K 0 K 2 e T,J € JK), (no zero
k FcVv eigenvalues)
1| & -k 2- K Fot- or proportional hyperbolic
Generic
combinatorial 0 y -t
matrices G. k k
1 k k 1 +.+0
Class G): -k -k P ¢ PKK)
1 k --0 or proportional Degenerate Nondegenerate
O(k) (zero sector
z 0 eigenvalues) is elliptic
1 1 +0..0 1
1 k 1 k or proportional,
-1 -1 0.0 including P,
1 k
0
— K K +ot
Isotropic _K K 0 or pro Ionional
matrices /. -K -K - prop
K
Class I):
0
— Nondegenerate
ol 0 ¢ -
() K 0 K 0 0 0..0 is the only (no zero elliptic
example eigenvalues)
K
The unmatrix —
U. Fully
degenerate
— 0 0 0 0 —
Class U): (all zero
id _ eigenvalues)
Ao Eigenvalue
Key| «a. Algebraic
multiplicities
Ye geometric

Figure 2:
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Classification of Combinatorial matrices by eigenspaces, with a shared K-basis of eigenvectors

1
1 1

Isotropic I)

5
B
-

Eigenvalues y

Geometric K
multiplicities

¢ig, (I)
Eigenspaces

=11
&
5
~
=

ES)
=~

Generic G):

1 1
requires — | : —= T ==
K> 2 VK V2| o kK

Eigenvalues z y

Geometric
multiplicities

€ig (G)
Eigenspaces

i
¢ig. (G) GIB ¢ig, (G)
@

Unmatrix U) —

Eigenvalues —

Geometric
multiplicities

Eigenspaces 0 = CEig(U)

Figure 3:

B Boosting classifications using Order Theory

Structures 11 and 12 Classificatory-table versus classificatory-key depictions are illustrated
in Fig 4 for the current Article’s cumulative-K Spectral classifications. On the one hand, tables
can encode some simple patterns of coarse graining. On the other hand, the key diagram can
be considered to be a rooted tree [38, 62], which is a subcase of poset [33, 40]. Rooted trees are
not in general preserved under quotients, but more general posets can accommodate these. In
this way, key diagrams are stronger when the objects under classification are sharply enough
defined to have meaningful quotients.

Remark 1 Fig 5 abstracts posets from the previous figure. Including the following illustrative
quotients. b) Treating the signs as distinguishable but meaningless. ¢) Identifying equal
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Spectral classification of Combinatorial matrices

Table presentation Poset presentation

Combinatorial matrices C

Symmetry class G I U

Rank K k 1 K 0

Signature
(Physicists')
Signature

ithsicists-in-detail)

++ =+ +—-|—] + - + - + -

Figure 4:

signatures. d) Both at once. b) still manages to be a rooted tree, while ¢) and d) exhibit
cycles.

k ok %

Remark 2 Graphs underlying these posets are exhibited in rows 3 and 4. See [75] for an
explanation of the specific style of these presentations of graphs.

Remark 3 In Fig 6, we split into Combinatorial matrices with each individual value of K .
K = 0 forms a disjoint chain: involving objects not present for any subsequent K .

K = 1 isalso particularly simple, since here the matrices are just numbers, and these support
just the one lone eigenspace.

K = 2,3 have extra scope for identifications. K = 2 ’s third row exceptionally contains
more than just rank information. By discerning between whether it is the subsequently-solo or
the subsequently-degenerate eigenvalue that is 0 . Cutting this out, corresponding by rank
alone, excises the paler vertices and edges in Figs 5 to 7.

K = 3 is minimum for the generic case to have a symmetry-degenerate eigenspace.
K = 4 is the minimum generic value including our quotienting considerations. With less
quotienting, K = 3 can play this role. This role corresponds to the Combinatorial matrix

arena C9Mr being Spectrally truncated at, and persistently past, this value. Which is these
matrices’ main Spectral feature. The Author shall eventually consider small-sized square ma-
trices’ Jordan normal forms, which are not afflicted by any such truncation, for subsequent
comparison.

Remark 4 Underlying graphs for these quotients are provided in Figs 7 and 8. The under-
lying homeomorph irreducibles are in row 4, cycle systems in row 5, and the homeomorph
irreducibles of the cycle systems themselves in row 6. For the first 2 graphs in 5’s homeo-
morph irreducibles, just remove the non-encircled 1’s and 2’s. All are planar bar Fig 8 column
1 rows 3 to 6, by virtue of the marked Ks 3 forbidden subgraph.

Remark 5 All the above planar graphs furthermore correspond to upper-planar [30] posets:
a more stringent condition.
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